Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory.
نویسنده
چکیده
This study evaluates the effects of muscle axis shifts on the performance of a vector velocity-position integrator in the CNS. Earlier models of the oculomotor plant assumed that the muscle axes remained fixed relative to the head as the eye rotated into secondary and tertiary eye positions. Under this assumption, the vector integrator model generates torsional transients as the eye moves from secondary to tertiary positions of fixation. The torsional transient represents an eye movement response to a spatial mismatch between the torque axes that remain fixed in the head and the displacement plane that changes by half the angle of the change in eye orientation. When muscle axis shifts were incorporated into the model, the torque axes were closer to the displacement plane at each eye orientation throughout the trajectory, and torsional transients were reduced dramatically. Their size and dynamics were close to reported data. It was also shown that when the muscle torque axes were rotated by 50% of the eye rotation, there was no torsional transient and Listing's law was perfectly obeyed. When muscle torque axes rotated >50%, torsional transients reversed direction compared with what occurred for muscle axis shifts of <50%. The model indicates that Listing's law is implemented by the oculomotor plant subject to a two-dimensional command signal that is confined to the pitch-yaw plane, having zero torsion. Saccades that bring the eye to orientations outside Listing's plane could easily be corrected by a roll pulse that resets the roll state of the velocity-position integrator to zero. This would be a simple implementation of the corrective controller suggested by Van Opstal and colleagues. The model further indicates that muscle axis shifts together with the torque orientation relationship for tissue surrounding the eye and Newton's laws of motion form a sufficient plant model to explain saccadic trajectories and periods of fixation when driven by a vector command confined to the pitch-yaw plane. This implies that the velocity-position integrator is probably realized as a subtractive feedback vector integrator and not as a quaternion-based integrator that implements kinematic transformations to orient the eye.
منابع مشابه
Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys.
One-dimensional models of oculomotor control rely on the fact that, when rotations around only one axis are considered, angular velocity is the derivative of orientation. However, when rotations around arbitrary axes [3-dimensional (3-D) rotations] are considered, this property does not hold, because 3-D rotations are noncommutative. The noncommutativity of rotations has prompted a long debate ...
متن کاملModeling three-dimensional velocity-to-position transformation in oculomotor control.
1. A considerable amount of attention has been devoted to understanding the velocity-position transformation that takes place in the control of eye movements in three dimensions. Much of the work has focused on the idea that rotations in three dimensions do not commute and that a "multiplicative quaternion model" of velocity-position integration is necessary to explain eye movements in three di...
متن کاملThree-dimensional location of human rectus pulleys by path inflections in secondary gaze positions.
PURPOSE Connective tissue pulleys serve as the functional mechanical origins of the extraocular muscles (EOMs). Anterior to these pulleys, EOM paths shift with gaze to follow the scleral insertions, whereas posterior EOM paths are stable in the orbit. Inflections in EOM paths produced by gaze shifts can be used to define the functional location of pulleys in three dimensions (3-D). METHODS Co...
متن کاملModeling and Control of 3d Eye Movement with Musculotendon Dynamics
Recent anatomical studies of extraocular muscles (EOM) demonstrate the stability of muscle paths. This is due to the fact that each rectus EOM passes through a pulley consisting of an encircling ring or sleeve of collagen. In this paper, the EOMs are modeled using the Hill type musculotendon complex and the effect of extraocular pulleys are studied. The model proposed by Martin and Schovanec in...
متن کاملGoal-driven modulation as a function of time in saccadic target selection.
Four experiments were performed to investigate the contribution of goal-driven modulation in saccadic target selection as a function of time. Observers were required to make an eye movement to a prespecified target that was concurrently presented with multiple nontargets and possibly one distractor. Target and distractor were defined in different dimensions (orientation dimension and colour dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 5 شماره
صفحات -
تاریخ انتشار 1998